优游彩票手机版登陆
优游彩票娱乐平台
点击:12
精细到发丝级别的抠图算法工程师的浪漫YYDS!
发布时间:2022-09-27 03:23:24 来源:优游彩票手机版登陆 作者:优游彩票下载登录

  近期PaddleSeg团队复现了经典Matting算法MODNet,并进行了一定改进,提供了更丰富的backbone模型选择,适用边缘端、服务端等多种任务场景。

  同时PaddleSeg团队提供了可部署在手机端的APP应用,欢迎大家收藏链接体验Matting的人像抠图效果。

  Matting精细化抠图被广泛应用在多种行业,如视频剪辑,视频合成等领域。

  看到这么好的技术,有的小伙伴们会比较关注技术上是怎么实现的,那么我们就一起来看看Matting的技术演化过程。

  本文将分别对两类Matting算法展开介绍,和小伙伴们一起梳理Matting的发展历程。

  DIM(Deep Image Matting)第一次阐述了在给定图像和辅助信息Trimap的情况下,可以通过端到端的方式学习到Alpha。其网络分为两个阶段,第一阶段是深度卷积编码-解码网络, 第二阶段是一个小型卷积神经网络,用来减少编码-解码网络引起的细节损失,提升Alpha预测的准确性和边缘效果。在DIM之后诞生了大量的基于Trimap的Matting网络。

  BGMv2(Background Matting v2) 改变思路,利用背景图像取代Trimap来辅助网络进行预测,有效避免了Trimap获取费时费力的问题,并将网络分为Base网络和Refiner两部分。在计算量大的Base网络阶段对低分辨率进行初步预测,在Refiner阶段利用Error Map对高分辨率图像相应的切片进行Refine。通过此实现了高分辨率图像的实时预测。

  辅助信息的获取极大限制了Matting的应用,为了提升Matting的应用性,针对Portrait Matting领域MODNet摒弃了辅助信息,直接实现Alpha预测,实现了实时Matting,极大提升了基于深度学习Matting的应用价值。MODNet将Matting分解成三个子目标进行优化,通过任务分解提升Alpha预测的准确率。

  当前PaddleSeg提供的Matting算法便是对MODNet算法的复现,并在原著基础上提供了多个不同主干网络的预训练模型如RestNet50_vd、HRNet_w18。来满足用户在边缘端、服务端等不同场景部署的需求。

  为了让开发者们更深入的了解Matting的原理,飞桨团队精细准备了两日课。

  11月17日~18日19:00~20:00百度资深高工将为我们从原理到实战,全方位的解析Matting算法的前世今生,还在等什么!抓紧扫码上车吧!

上一篇:光电转换效率高达217%钙钛矿太阳能电池刷新世界纪录 下一篇:厉害了!这种太阳能电池板能在夜晚发电昼夜均可用怎么做到的